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PANEL LOSS FACTORS DUE TO OAS-PUMPING 

AT STRUCTURAL JOINTS 

By Q. Maidanik and E. E. Ungar 

ABSTRACT 

The r ecen t ly  observed f a c t  t h a t  t he  high-frequency s t r u c t u r a l  
damping due t o  r ive t ed  j o i n t s  i s  associated w i t h  "gas-pumping" i n  
the space between overlapping surfaces is  subjected t o  t h e o r e t i c a l  
and experimental study. A theory i s  developed, which a t t r i b u t e s  
the damping of plates with riveted-on beams t o  viscous lo s ses  
associated w i t h  the tangent ia l  gas motions i n  the beam-plate 
Interspace that  are generated by normal r e l a t i v e  motions of the 
adjacent  beam and p l a t e  surfaces.  
between t h e o r e t i c a l  predict ions and experimental data obtained 
f o r  th ree  d i f f e r e n t  gases over a wide range of pressures .  

Reasonable agreement i s  found 
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INTRODUCTION 

I n  a recent  study of energy d i s s ipa t ion  a t  r ive t ed  s t r u c t u r a l  
1 2  j o i n t  d it was found t h a t  t h e  "gas pumping," which r e s u l t s  as 

adjacent  surfaces  move toward and away from each other,  may con- 
t r i b u t e  s i g n i f i c a n t l y  t o  the t o t a l  damping. 
a theory which accounts f o r  t h i s  gas-pumping damping and which 
revea ls  t he  e f f e c t s  of various parameters on t h i s  damping. 

Th i s  report develops 

The s p e c i f i c  s t r u c t u r a l  configuration analyzed here cons i s t s  
of a plate t o  which a beam i s  attached by means of r i v e t s  o r  
similar point-connectors (Fig. 1) . 
corresponds t o  that which has previously been studied experi- 
mentally; a l so ,  information obtained f o r  such configurations may 

This type of configuration 

readi ly  be applied t o  more complex r e a l i s t i c  panel s t ruc tu res .  H 
The theory developed i n  the present repor t  ascribes the 

d i s s i p a t i o n  of energy i n  the  air-pumping process t o  viscous 
l o s s e s  associated w i t h  air flow tangent ia l  t o  the beam and plate 
~ u r f a c e s ,  where t h i s  a i r  flow is due t o  pressure gradients  that  
occur i n  t he  space between these surfaces as these surfaces  
move toward and away from each other.  The a n a l y t i c a l  approach 
taken here I s  based i n  part on the  work of Dimeff, Lane, and 
C o o s ,  who studied a pressure gage i n  which the pressure of a 
gas I s  i n fe r r ed  from the  measured energy that is  t ransfer red  
from a v ibra t ing  diaphragm t o  the gas (and dissipated by the  
gas). These authors, however, d e a l t  with a simple s t r u c t u r e  
whose motion could be analyzed precisely,  whereas the  plate- 
beam system i s  more complex and does not readily lend I tself  
t o  p rec i se  analysis. 

The present  study confines i tself  t o  v ibra t ions  at  r e l a t i v e l y  
high frequencies - that Is ,  t o  frequencies at which the length 
of a plate bending wave I s  smaller than the spacing between 

1 
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adjacent r i v e t s .  The reason for the  choice of this frequency 
range i s  two-fold: 
found t o  be most pronounced a t  these high frequencies,  and 
(2 )  t h e  analyses for the  high-frequency case a re  i n  some respects  
more complex than those f o r  lower frequencies,  s o  that the  
methodology developed here should f a c i l i t a t e  g r e a t l y  the  treat- 
ment o f  corresponding low-frequency problems. 

(1) t h e  gas pumping damping e f f e c t  has been 

This repor t  is divided i n t o  two major sec t ions .  The first 
out l ines  the t h e o r e t i c a l  development of an expression f o r  t he  
contribution t o  t he  panel l o s s  f a c t o r  t h a t  i s  made by gas 
pumping, whereas the  second presents  corresponding experimental 
measurements and compares them w i t h  t h e o r e t i c a l  p red ic t ions .  
A summary and recommendations f o r  f u r t h e r  work appear at  the  end 
of t h g s  repor t .  
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THEORETICAL DEVELOPMENT 

Loss Factor and System Energy 

The l o s s  f a c t o r  of a v ibra t ing  system i s  a convenient measure 
of i t s  damping. 
state a t  c i r c u l a r  frequency cu the l o s s  f a c t o r  q may be defined as 

For l i gh t ly  damped systems v ib ra t ing  i n  steady. 

, 

where @a denote8 the time-average rate of energy d i s s i p a t i o n  ( t h a t  
is, the average power d i s s ipa t ed )  and E denotes the t o t a l  energy 
of the v ib ra t ing  system. Y 

The system energy E may be calculated r e a d i l y  If the system's 
mass and ve loc i ty  d i s t r i b u t i o n s  a r e  known. 
visual ized w i t h  the a i d  of Fig. 2, which represents  a sec t ion  taken 
through the plate-and-beam system perpendicular t o  the beam length.  
For s inusoida l  time-dependences, as are assumed throughout t h i s  
der iva t ion ,  one may represent  any time-varying quan t i ty  v a8 

The latter may be 

where the quant i ty  V(x,y) i s  complex In general ,  and Is hown as a 
phasor." Then, i f  V i s  the phasor which represents  the ve loc i ty  
(due t o  f l exure )  everywhere on the  p la te ,  except a t  and near  that 
region which is  covered by the beam, If Vs is the ve loc i ty  phasor 

P 

*Throughout t h i s  repor t ,  c a p i t a l  l e t t e r s  are used t o  represent  
phasors which p e r t a i n  t o  time-varying q u a n t i t i e s  represented by 
the corresponding lower case letters, 
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f o r  the beam-covered region, and i f  vb is t he  ve loc i ty  phasor f o r  
the beam i tself ,  one may express t h e  energy E, i n  the plate-and- 

* 

Here A denotes the t o t a l  p l a t e  surface area (one side) , Ab denotes 
the t o t a l  beam surface area that is “ i n  contact” w i t h  the plate, 
and % and rtj, represent the plate and beam masses per u n i t  area; 
the  brackets < > i nd ica t e  spatial (x,Y) averages of the q u a n t i t i e s  
they enclose. The second approximate equa l i ty  of Eq. ( 3 )  appl ies  
f o r  the  usual case where the plate area is much g rea t e r  than the 
beam area, and where t h e  mean-square plate ve loc i ty  < l V  12> i n  the 
plate region that  is not  covered by the  beam g r e a t l y  exceeds both 
the  p l a t e  mean-square ve loc i ty  < l V s l  > i n  the beam-covered p l a t e  
s t r i p  and the mean-square ve loc i ty  <lvb12> of the beam i t se l f .  

P 

P 
2 

Power Dissipation i n  Interspace Gas 

I n  addi t ion t o  the energy E of the v ibra t ing  system, one must 
know’the time-average power d i s s ipa t ion  Qa i f  one desires t o  deter- 
mine the system l o s s  f a c t o r  according t o  Eq. (1).  
power may be calculated from the instantaneous rate of energy d is -  
s ipa t ion  4. For a volume U of an incompressible f l u i d ,  t h i s  rate 

This time-average 

of enery d i s s ipa t ion  is given by 2/ 

4 



@ = , P I [  r==x,y,z c s=x,y,z c ( 2 ) ’ 3 d U  
(4) 

where ~1 denotes the  f l u i d ’ s  v i scos i ty ,  and vr = v (x,y,z, t)  , 
r - x,y,z , denotes the component of the f l u i d  ve loc i ty  parallel 
t o  the r-coordinate. Since I n  a l l  p r a c t i c a l  cases of i n t e r e s t  
here the v e l o c i t i e s  are small compared t o  the ve loc i ty  of sound, 
and s ince  a gas behaves e s s e n t i a l l y  as i f  i t  were incompressible 
f o r  such ve loc i t i e s ,  the  foregoing equation may also be applied 
here for  the gas t h a t  occupies the space between the beam and 
the plate. 

r 

For the present  case, where all quan t i t i e s  vary s inusoida l ly  
w i t h  time, one may introduce phasors and express the time-average 
value of the power dissipated as 

where the asterisk denotes the complex conjugate of the quant i ty  
t o  which it is attached. 

Gas Velocity Dis t r ibu t ion  

I n  order  t o  determine the  veloci ty  d i s t r i b u t i o n  t h a t  descr ibes  
the motion of t he  a i r  in the beam-plate interspace,  one requi res  
t he  equation of a motion of viscous f l u i d s  (that is, the Navier- 
Stokes equation) , z/ 
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and the equation of c o n t i n u i t 9  

+ p d i v  + x-g- - 0 (7) 

H e r e  p denotes the  f l u i d  density,  < the "second viscosi ty , ' '  and x 
represents t he  f l u i d  veloci ty  vector (which has components vx, 
vy3 vz). 
quant i t ies .  

T i ldes  (-) are used t o  designate vectors  and vector-l ike 

For flows involving small Mach numbers, the f l u i d  may be re- 
garded as incompressible, as pointed out previously, and f o r  in -  
compressible f l u i d s  grad p=O. The term i n  Eq. (7) may a l s o  
be neglected i f  the time taken by a small disturbance t o  t raverse  
a c h a r a c t e r i s t i c  length is small compared t o  the t i m e  during which 
the  flow changes appreciab1y.Y Under these conditions Eq. (7) 
implies d i v  x = 0, and Eq. (6) may be s implif ied accordingly. For 

and Eq. (6) reduces t o  

- 

small Reynolds numbers the (x.grad) term may a l s o  be neglected, z/ 
w 

If one assumes the ve loc i ty  vector and the pressure p t o  
vary s inusoida l ly  i n  the x and y d i r e c t i o n s  (parallel t o  the plane 
of the plate, see Fig. 2) and i n  t i m e ,  then one may write 

6 



Subs t i tu t ion  of Ea. (9) i n t o  (8) y ie lds  

This d i f f e r e n t i a l  equation may readi ly  be solved by standard 
techniques. 
z-coordinate, so  that Q ( z )  is a vector  whose components are corn- 
p l ex  constants,  one f inds  upon use of the boundary conditions 
vx(&h/2) = vy(&h/2) = 0 that 

If the pressure gradient  I s  independent of the 

Y 

s2 a - (k2 + k2 + iup/.> = - (k2 + k2 + 2i/02) 
X Y X Y  

. 
The symbol 6 which was introduced above, denotes the e f f e c t i v e  

depth of penet ra t ion  of an o s c i l l a t o r y  disturbance, or the "08- 

c l l l a t i o n  boundary layer thickness, which is given bJTz/ 

7 



Here Vw/p represents  the  kinematic v i scos i ty  of the f l u i d .  

Effect  of Osc i l la t ion  Boundary Layer Thickness 

By use of Eq. ( 9 )  one may reduce the  integrand of Eq. (5) t o  

For the case of i n t e r e s t  a t  present ,  t h e  wavelengths i n  t h e  x-y 

one may neglect the last set of term of Eq. (13). 
Eqs.  (11) and (13) i n t o  (5) and neglect ing the small z-velocity 
contributions one may then obtain 

plane g rea t ly  exceed the plate separat ion h; then h 7 kx+ky ((1 and 
By s u b s t i t u t i n g  

where In tegra t ion  indicated i n  Eq. (5) i s  car r ied  out over the volume 
U=%h of the beam-plate interspace,  and where 

has been defined, so that  I I s ( z )  I I r epresents  the  length of a 
vector whose components are the  absolute values of the complex 
numbers which represent  the components of t h e  Q ( z )  vector. 

LI 
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For the case which is of primary Interest here the wave- 
lengths  i n  the  x-y plane greatly exceed the  o s c i l l a t o r y  boundary 

6, as well as the separat ion h. Therefore, 
and s - + (1-1)/6. With t h i s  approximation one 

may readily ca r ry  out the in t eg ra t ion  indicated i n  Eq. (14) t o  
obtain a r e s u l t  which one may express as 

where 

and where Eq. (12) has been used t o  eliminate w .  

The funct ion H - (e ) ,  which embodies the e f f e c t  of the o s c i l l a -  
t i o n  boundary layer thickness  6 on the power d i s s ipa t ion ,  is  
p l o t t e d  i n  Fig, 3. 
of t h e  shape of this curve appears in a l a t e r  s ec t ion  of t h i s  re- 
p o r t  . 

A discussion of t h e  meaning and the implicat ions 

I n  the foregoing it has t a c i t l y  been assumed tha t  edge e f f e c t s  
are negl ig ib le ;  i.e., that t h e  f l u i d  behavior near the beam edges, 
which differs from t h a t  of the bulk of the  f l u i d ,  does not  a f f e c t  
the t o t a l  power 4a s ign i f i can t ly .  
long as the separat ion h between the adjacent beam and plate sur- 
faces  is  small i n  comparison t o  any l i n e a r  dimension of the over- 
lapping areas . 

This  assumption I s  va l id  as 

I 
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Now, having obtained Eq. (16), one may use i t  and Eq. ( 3 )  
i n  Eq. (l), t o  f ind  the following expression f o r  the  loss fac tor :  4 

One s t i l l  requires  a r e l a U o n  between the  plate  ve loc i ty  V 
the  interspace gas pressure p i n  order t o  evaluate  Eq. (18 P fu l ly .  
The subsequent sec t ions  are addressed t o  t h e  der iva t ion  of such a 
re la t ion .  

and 

In te rac t ion  of Interspace Gas and S t ruc tu ra l  Motions 

In order t o  determine the pressure gradient  that  e x i s t s  i n  the  
beam-plate interspace,  one must analyze how t h e  interspace pressure 
and the  s t r u c t u r a l  motions i n t e r a c t .  
t i o n  vs i n  t h e  region covered by the  beam may be expected t o  d i f f e r  
from the ve loc i ty  f i e l d  v 
of the beam, which a c t s  on t h e  plate  both v i a  t h e  mechanical 
fasteners (e.@;., r i v e t s )  and v i a  t h e  gas t h a t  occupies the space 
between t h e  adjacent beam and p la te  surfaces .  The pressure i n  the  
interspace,  of  course, depends d i r e c t l y  on the  s t r u c t u r a l  motions. 

The plate  ve loc i ty  d i s t r ibu -  

on the remainder of t h e  plate,  because 
P 

Effect  of Rivets on Plate  Motion 

The e f f e c t  of a r i v e t  on t h e  p la te  ve loc i ty  f i e l d  is ,  I n  
essence, confined t o  a c i r c u l a r  region w i t h  rad ius  k -1 around 

P 
the r i v e t .  A row of r i v e t s ,  i n  which the spacing between 
r i v e t s  encompasses many plate  f l e x u r a l  wavelengths, may thus be 
expected t o  have l i t t l e  e f f e c t  on the  average ve loc i ty  of the 
beam-covered port ion of the plate. 
i n  producing a ve loc i ty  f i e l d  vs i n  the beam-covered port ion of 
the p la te  when there e x i s t s  a ve loc i ty  f i e l d  v 
of the p la te  may be summarized by t h e  expression 

The e f f e c t  of a row of r i v e t s  

on the remainder 
P 
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<lvSl2> = <lVp12> S(k P d )  3 

where d denotes the dis tance between adjacent r i v e t s .  S($d)*l 
f o r  $d 2 5, but f o r  smaller values of the argument S ( 5 d )  is a 
complicated function which exh ib i t s  peaks f o r  2 d E l ,2,3, ... . Y 5? 

The e f f e c t  of the gas i n  the interspace on the motion of the 
beam-covered plate s t r i p  is superposed on t h a t  of the r ivets . .  
Unfortunately, the  r ive t  e f f e c t  is associated with the point  i m -  
pedance of the plate, whereas the gas e f f e c t  (as  discussed subse- 
quently) is associated e s s e n t i a l l y  with t h e  l i n e  impedance of 
the plate. The dependences on these two types of impedance lead 
t o  great a n a l y t i c a l  complications - and, i n  order  t o  avoid these, 
it is convenient t o  assume that t h e  two e f f e c t s  are uncorrelated.  
Use of t h i s  assumption prevents one from accounting f o r  some of 
the  details of t k E  p l a t e  motion, such as resonances and anti- 
resonances that may occur between the  two e f f e c t s ,  bu t  it makes 
ana lys i s  of the gross  p rope r t i e s  feasible and should yield good 
r e s u l t s  a t  least f o r  $ 0 5  . 

Effec t  of Gas on Plate Motion 

I n  order  t o  analyze the e f f e c t  of  t h e  in te rspace  gas pressure 
on the plate motion most simply, one may take note of the f a c t  that 
the beams (o r  other  re inforc ing  o r  supporting members) i n  most 
p r a c t i c a l  s t r u c t u r a l  configurations are much longer than they are 
wide. Plate waves thus impinge on a beam primari ly  l a t e r a l l y ,  so 
that the  wave propagation on the plate i n  the v i c i n i t y  of the beam 
w i l l  on the average be predominantly i n  the x-direct ion (perpen- 
d i c u l a r  t o  the beam l e n g t h ) . l  An "average" wave motion on the  
beam-covered plate s t r i p  thus i s  independent of the y-coordinate 

6 
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(measured p a r a l l e l  t o  the beam length)  and i s  governed by 
wavenumber kx = kp i n  the x-coordinate d i rec t ion .  

a 

on The response of a p l a t e  t o  such a pressure d i s t r i b u t  is 
governed by the  plate 's  " l i ne  impedance;" i.e., by the  Impedance 
of  the plate t o  a force  which i s  uniformly d i s t r ibu ted  along a 
s t r a i g h t  l i n e .  However, the  pressure d i s t r i b u t i o n  on the  plate 
s t r i p  i s  composed of an in f in i tude  of parallel l i n e  forces  (and 
the magnitudes of these forces  have the  same spatial and temporal 
per iodic i ty  as the  p l a t e  waves), s o  that the veloci ty  a t  each 
point  on the plate s t r i p  depends not only on the  pressure ( l i n e  
force)  t h a t  a c t s  d i r e c t l y  at  t h a t  po in t ,  but on the  forces  that  
a c t  on the e n t i r e  s t r i p .  

The matching of t he  p e r i o d i c i t i e s  of t he  forces  and of the  
p l a t e  waves causes the ve loc i ty  a t  each point  t o  be g rea t e r  than 
t h a t  produced by am independently ac t ing  l i n e  force.  One may 
account f o r  t N s  Increased ve loc i ty  e i t h e r  by introducing an 
e f f ec t ive  impedance which i s  smaller than the l i n e  imhedance, o r  
by Introducing an Increased a r t i f i c i a l  "e f fec t ive"  pressure Pe 
whose use i n  conjunction w i t h  the l i n e  Impedance r e s u l t s  i n  t he  
correct  plate veloci ty .  One f inds  that 

Pe = B Pa , B fi: 1 + kpb/r , 

where b denotes the beam width and Pa t he  acoust ic  pressure (ice., 
the change from ambient pressure) .  

12 



. 
The v a l i d i t y  of the above expression f o r  P may readily be 

.verified.  
of the pressure f i e l d  (associated wi th  the plate ve loc i ty  f i e ld )  
that  extend over the beam and p l a t e  s t r i p  width b. 
i c i t i e s  of t he  pressure and plate veloci ty  fields are the same, the 
pressures  ac t ing  a t  poin ts  separated by an I n t e g r a l  number of half- 
wavelengths make in-phase contributions t o  the ve loc i ty  at any' 
s ing le  point .  Thus, the e f f e c t i v e  pressure a t  any poin t  exceeds 
the a c t u a l  pressure by the  number of half-wavelengths over which 
the pressure f i e l d  extends. (The contr ibut ions from po in t s  with 
other  than i n t e g r a l  mult iples  of half-wavelength 
cancel each other, on the average.) 

The term k b/T represents  the  number of half-wavelengths P 

Since the  period- 

spacing e s s e n t i a l l y  

The ac t ion  of the interspace pressure produces a change i n  the 
plate ve loc i ty  from v 
t h e  s t r i p ) .  

(outs ide the  beam-covered s t r i p )  t o  vs (on 
P 

One may thus wr i te  

BPa = - z(v, - vp) # 

where 2 denotes the l i n e  pressure impedance of the plate and is  
given by 

i n  terms of the mass mp per u n i t  a rea  of the plate. El 

Effec t  of Plate Motion on Gas Pressure 

I n  order  t o  obtain a second r e l a t i o n  between Pa and Val 80 

tha t  one then can el iminate  Vs from Eq. (21), one may t u r n  t o  the 
equation of cont inui ty ,  Eq. (7) . As previously mentioned, 
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grad p ft 0 here, i n  view of the small Mach numbers involved. 
From the equation of s t a t e  of an ideal gas, 

pp-' = constant 9 (23) 

where Y i s  a s u i t a b l e  "polytropic" exponent: one may deduce that 
1 

where po denotes the average (ambient) gas pressure.  
may be rewr i t ten  as 

Eq. (7) then 

1 

Since i n  the beam-covered region the wave propagation i s  es- 
s e n t i a l l y  independent of y, as previously discussed, one may in t ro -  
duce phasors as indicated i n  Eqs. (9)  and wr i te  

i(at -kpX) 
# 

vS = - - = e  Pa x 
P, 'H vS 

where taking of the real part i s  implied, of course. 
of these phasors In to  Eq. (25) y ie lds  

Introduction 

"This exponent depends on the  thermodynamic process that  the gas 
undergoes. For isothermal processes Y - 1; f o r  r eve r s ib l e  adia- 

spec i f ic  heats . ba t i c ,  o r  " isentropic ,  II processes, Y i s  equal t o  the r a t i o  of 
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- -  3 
iwP, i v x + - = o  dWZ 

yPO kp dz 

In  the foregoing, the  pressure has been taken as independent of z, 
as is reasonable f o r  the general ly  s a t i s f i e d  condition koh<<l 8 

where ko denotes the acoust ic  wavenumber; the gas ve loc i ty  i n  the 
z-direct ion has been taken as zero at z = h/2 (s ince the beam 
veloc i ty  vb fl  0) and as vs at z = -h/2. 

I 

and in t eg ra t ion  of t h i s  r e s u l t  over the gap leads t o  

h/2 - -  
m0 -h/2 W, dz - W 'I-, vs i k  

ioP,h 

P 

One may evaluate the i n t e g r a l  appearing in Eq. (28) by using 
the expression of Eq. (11) f o r  Wx and the previously employed 
approximation s - ( l + i ) / Q  . 
that (GRAD p), = - i k  P here, and t h a t  

For pa as given by Eq. (26) one f i n d s  

P a  

W h e r e  H_(e) and 8 = h/6 are defined i n  Eqs.  (17) and H+(B) is 
analogously defined as 

1 5  



If one s u b s t i t u t e s  Eq, (28) i n t o  Eq. (21) and solves  f o r  V i n  
terms of Pa one obtains  

P 

w i t h  the aid of Eqs.  (12) and (22). 

Results 

Loss Factor i n  Terms of Gas and Structure  Parameters 

If one determines % ( z )  by ca lcu la t ing  grad p from Eq. (26) and 
w 

comparing the r e s u l t  t o  the corresponding expression of Eq. ( g ) ,  
then one f inds  by applying Eq. (26) that here I I Q ( z )  ..) I 12-kE Pal2. 
One may then determine that 

2 2 if one considers t h a t  IV I =2<1V 1 >, but a l s o  notes  that the fore- 
going ana lys i s  has overestimated the  numerator by a f a c t o r  of 2 
(since,  on the  average, t he  randomly inc ident  waves cause only half  
as much d i s s i p a t i v e  gas motion as the normally Incident waves that 
had been assumed i n  the analysis). 

P P 

Subst i tut ion of Eqs,  (31) and (32) i n t o  (18) yields a r e s u l t  
which may be expressed as 

where 
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and 

In  the foregoing, S represents t h e  absolute value of the  func- 
t ion S(k  d )  of Eq. (lg), and has been introduced here t o  account f o r  

P 
the e f fec t  of the r ivets .  Introduction of S i n  t h i s  manner i s  le- 
gitimate, i n  view of the assumption that pressure and r i v e t  effects 
are uncorrelated . 

t 

The symbols defined i n  Eq. (35) have useful physical interpre- 
tations.  Za may seem t o  be the absolute value of the s t i f f n e s s  im- 
pedance of the  gas i n  the interspace, for uni t  area (measured 
parallel  t o  the plate surface). Similarly,  Z i s  the  absolute value 
of the i n e r t i a  impedance of un i t  area of the plate. 
represents the acoustic c r i t i c a l  frequency, 1.e. the frequency a t  
which a f lexural  wave on the  plate has t h e  same wavelength as an 

P 
The symbol uC 

acoustic wave i n  the ambient gas. Y* 

Physical Interpretation 

The l o s s  factor  given by Eq. (33) clearly i s  independent of 
the amplitude of the  plate vibrations. This independence follows 
from the  proportionality between the plate velocity and gas pressure 
amplitudes, and from the  proportionality between time-average power 
dissipation and plate vibrational energy implied by t h i s  r e l a t ion  
between the pressure and velocity amplitudes. 
of the l o s s  factor  has also been observed experimentally ( i n  absence 
of Impacts between the  beam and plate  surfaces) previousl& and i n  
the  experiments the results of which are presented subsequently. 

*The relat ion co2 = ap/ap = ypdp,  where co denotes the acoustic vel- 
o c i t y  of the gas, may be obtained from the  equation of state, Eq. (23). 

I 
Amplitude-independence 

j 
I 
f 
I 
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Equation (33) shows that the l o s s  f a c t o r  q associated with 
air- umping i n  the beam-plate interspace i n  a narrow frequency 
ban&centered on w depends on the  r a t i o  %/A P of beam area t o  
p l a t e  area, on the  r a t i o  Z /Z. of a i r  s t i f f n e s s  impedance t o  

a P  
p l a t e  mass impedance per unit  area, on the r a t i o  Uc/u of the 
acoust ic  c r i t i c a l  frequency t o  the frequency of i n t e r e s t ,  on the 
r a t i o  8 = h/& of the average gap (Interspace)  thickness  t o  the 
o s c i l l a t i o n  boundary l aye r  thickness  ( v i a  the function H,) and 
on S/G. The function S accounts f o r  the e f f e c t  of the r i v e t s  on 
the plate motion, whereas the funct ion G accounts f o r  the i n t e r -  
act ion between the gas and plate motions. 

The funct ion H-(8) , which embodies the dependence of power 
d i s s ipa t ion  on the r a t i o  8 of gap t o  boundary l a y e r  thickness,  i s  
p lo t ted  i n  Fig. 3. As evident from t h i s  f igure o r  from Eq. (17), 
H - ( e )  Increases monotonically f o r  small 8, reaches a peak a t  6 = 2, 
then decreases monotonically. This behavior of H w (e )  can r e a d i l y  
be explained i n  physical  terms. Large values of 8 = h/6 correspond 
t o  conditions where the  boundary layer occupies only a small frac-  
t i o n  of t he  t o t a l  gap thickness  h; s ince energy d i s s i p a t i o n  occurs 
pr imari ly  within the boundary layer, t h i s  is  i n  e f f e c t  confined 
t o  a small region of the gap, and the  damping i s  small. 
values of h/6 correspond t o  conditions where the boundary layer 
thickness I s  large compared t o  the gap width. 
serves t o  r e s t r i c t  the motion of a l l  of the gas i n  the interspace,  
again r e su l t i ng  i n  small d i s s ipa t ion .  
damping occurs at  an intermediate value of h/6, where the  boundary 
l a y e r  I s  thick enough so that most of the  gas p a r t i c i p a t e s  i n  the  
d iss ipa t ion ,  yet  t h i n  enough so as not  t o  r e s t r i c t  the gas motion 
excessively. 

Small 

Here the  boundary 

The greatest amount of 
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. 
One may a l s o  note that the function G depends on the ambient 

* pressure po v i a  the impedance r a t i o  Za/Z . For low pressures  (and 
high enough frequencies, so t h a t  uC/u <lp  G approaches unity,  where- 
as f o r  high pressures G may exceed unity considerably. T h i s  be- 
havior of the function G may be ascribed t o  the f a c t  that at  low 
pressures  the gas does not r e s t r i c t  the r e l a t i v e  motion betwe.en 
the plate and beam appreciably, whereas a t  high pressures it does 
r e s t r i c t  t h i s  motion and thus results i n  decreased gas pumping and 
corresponding i n  l e s s e r  damping, 

It appears t h a t  the f irst  bracketed expression of Eq. (34) 
can vanish under appropriate conditions, which correspond t o  a 
resonance between the gas and the beam-covered plate s t r i p .  A t  
such a resonance G tends t o  take on a r e l a t i v e l y  s m a l l  value, and 
the l o s s  f a c t o r  tends t o  become r e l a t i v e l y  large, However, the 
d i s s i p a t i v e  terms ( the second bracketed expression) ensure that 
the resonance remains we&- i.e., that G does not become very 
s m a l l .  Hence, t h i s  resonance should have no appreciable e f f e c t  
on the behavior of the l o s s  f a c t o r  q. 

Dependence of Gas Viscosity on Gap Thickness 

The kinematic v i scos i ty  v of a gas i s  c l a s s i c a l l y  given by 

v = cmq2 

i n  terms of the mean speed Cm of the  molecules and the  molecular 
m e a n  f r e e  path A. The foregoing c l a s s i c a l  expression, however, 
applies only if a l l  dimensions of the space t o  which the gas I s  
confined are g rea t e r  than the mean free path. 
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If a gas is  confined t o  a region between two surfaces  which 
a re  separated by a d i s t a n t  h that is  of the order of A or  smaller, 
then co l l i s ions  of the  molecules with the surfaces  dominate the 
gas dynamics, r a the r  than intermolecular c o l l i s i o n s  (which dominate 
i n  the c l a s s i c a l  case). 
f r ee  path, and therefore  the  kinematic v i scos i ty .  Although there  
e x i s t s  no firm theore t i ca l  basis f o r  taking t h i s  t h i c h e s s  i n t o  

The gap thickness  h then a f f e c t s  the mean 

appears from previous work on a c lose ly  related 
one may reasonably write 

v ps Cmh/2B (37) 

fo r  the case where A 2 h. Here B i s  a dimensionless constant,  the 
value of which must be determined empirically. 

It i s  convenient t o  "bridge" the  expressions of the two fore- 
going equations mathematically, i n  order t o  represent  a smooth 
t r a n s i t i o n  between the large-space and narrow-gap regimes. One 
may easily ver i fy  that the expression 

Cm h A 
2(h + a) V I  

reduces t o  Eq. (36) fo r  h >> B h  and t o  Eq. (37) f o r  h << me 

Since the molecular mean f r e e  path A of a gas va r i e s  inverse ly  
with the pressure po one may set A = K/p 
and rewrite Eq. (38) e x p l i c i t e l y  i n  terms of pressure as  

, where K is a constant,  
0 
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. It 
r e s u l t s ,  
From the 

Summary 

may be useful  now t o  co l l ec t  a l l  of the previously derived 
and t o  present them i n  a form su i t ab le  f o r  calculat ions.  
foregoing work* one f inds  that the gas-pumping loss f ac to r  

q observed i n  a narrow frequency band centered on w obeys 

where 

(40)** 

*Use  has a l s o  been made of the c l a s s i ca l  expression f o r  the plate 
f l exura l  wavenumber 

4 2 kp = 12(1-0 ) (U/\CL)2 8 

where hp denotes the plate thickness, CL the longi tudinal  wave veloci ty  
i n  the plate material, and Q t h a t  m a t e r i a l t s  Polssonts  r a t i o .  

**From Eqs .  (12), (17), and ( 3 9 ) .  
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sinh 6 2 sine 
H+(e) - = B[coshO + cose] 

- 

*From Eqs. (17) and (30). 
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EXPERIMENTAL STUDY 

Measurements 

A program of experiments was undertaken i n  order t o  tes t  
the  v a l i d i t y  o f  the  theory developed i n  t h e  preceding pages. 
T h i s  program consisted pr imari ly  of measuring the damping of 
a sample p l a t e ,  w i t h  and without a bolted-on beam, a t  various 
pressures  and i n  three gases of  widely d i f f e r i n g  kinematic 
v i scos i t i e s :  a i r ,  helium, and "Freon 114". 

1 

I 

Apparatus and Instrumentation 
I 

A 1/64-inch t h i c k  plate of 2024-T3 aluminum was used i n  
the  experimental program. 
as shown i n  Fig .  4, i n  order t o  f a c i l i t a t e  the generation o f  
d i f fuse  f l e x u r a l  wave f i e lds  on the p la te .  The p la te  material 
was se lec ted  because o f  i t s  r e l a t i v e l y  low inherent  damping, 
s o  t ha t  t he  damping contr ibut ions due t o  the gas pumping could 
be measured more readi ly .  

The t e s t  p l a t e  was shaped i r r egu la r ly ,  I 

A one-inch wide, 1/4-inch thick,  aluminum beam was at tached 
t o  the  p l a t e  near one edge, as shown i n  Fig. 4, by means of b o l t s  
spaced 3 inches apart. 
b o l t  torque, surface roughness, and chemical c leanl iness  had no 
s i g n i f i c a n t  e f f e c t  on damping, no attempt was made t o  keep these 
parameters within close bounds. 

Since previous w o r k g  had shown that 

Two t h i n  1/2-inch diameter PZT-5 p i ezoe lec t r i c  d i s c s  
I 

( C l e v i t e  Corporation) were epoxy-bonded t o  the t e s t  p l a t e ,  
a t  t h e  loca t ions  indicated i n  Fig. 4. 
exc i t e  t he  plate  and t o  sense i t s  vibrations.  

These d i s c s  served t o  

The plate-and-beam assembly was suspended by means of f i n e  
w i r e  spr ings from a pedestal, and the  e n t i r e  apparatus was 

I 
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placed i n  a 28-inch high, l7-inch diameter cy l ind r i ca l  vacuum 
chamber. 
and-beam assembly touched the  pedestal o r  chamber walls, and 
f i n e  wire leads were used to connect the  PZT d i s c s  t o  the ex- 
t e rna l  e lec t ronics ,  i n  order t o  introduce as l i t t l e  spurious 
damping as possible .  

Great care  was exercised s o  that no part of the plate-  , 

A t yp ica l  experiment consisted of pumping the  vacuum 
chamber down t o  the  desired pressure,  then measuring the damp- 
ing of  t h e  t e s t  panel over the  e n t i r e  frequency range of i n t e r e s t .  
A McLeod gage (F.J. Stokes Co., No.  2 7 6 A A )  and an Alphatron Vacuum 
gage (NRC Equipment Corp.) were used t o  measure t h e  chamber 
pressure. 

A l l  damping,measurements were made by t h e  well-established 
decay-rate technique. T h i s  technique cons i s t s  of exc i t i ng  
t h e  panel v i a  one of the p i ezoe lec t r i c  d i s c s  by third-octave- 
f i l t e r e d  white-noise, then turning o f f  the exc i t a t ion  and ob- 
s e r v i n g  the  r a t e  of decay of t he  f r e e  v ibra t ions  ( o r  t h e  t i m e  
required f o r  the v ibra t ion  l e v e l  t o  decay t o  a given f r a c t i o n  
of i t s  i n i t i a l  value) . The e l ec t ron ic  instrumentation system 
t h a t  was used here i s  the  same as that  described i n  Ref. 2. 

Auxiliary Measurements 

Gap Thickness 

The average thickness  of t h e  gap between adjacent sur faces  
of the p l a t e  and beam is a quant i ty  which has a major e f f e c t  on 
the  gas-pumping that resu l t s  i n  t ha t  gap due t o  motion of the 
p l a t e  r e l a t i v e  t o  the beam. The average gap thickness  i n  t he  
experimental assembly was determined by the simple expedient of 
measuring (by means of a micrometer) the t h i c m e s s  of t h e  beam 
by i t s e l f ,  of the  p l a t e  by i tself  ( i n  the beam-covered region) ,  
and then of the  plate-plus-beam assembly. The amount by which 
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the  assembly thickness  exceeds the  t o t a l  metal thickness  may then . be ascr ibed t o  the gap which i s  occupied by gas. 

Twenty-one measurements were taken o f  each thickness,  a t  
various po in t s  along the  beam length.  Beam thickness  values 
were found t o  l i e  between 0.2507 and 0.2515 inches, p l a t e  t h i c k -  
ness values between 0.0328 and 0.0330 inches, and assembly 
thickness values between 0.2839 and 0.2880 inches. The cor- 
responding t o t a l  metal thickness  values were found t o  range from 
0.2835 t o  0.2843 inches, leading t o  calculated gap thickness  
values between 0.0000 and 0.0042 inches. The average gap thick- 
ness  was determined t o  be 0.0016 inches. 

Acoustic E f fec t s  of Vacuum Chamber Volume 

There was some concern t h a t  t h e  v ibra t ing  t e s t  panel might 
be s t rong ly  coupled t o  some modes of the gas i n  the chamber, and 
thus exchange energy wi th  these modes, leading t o  erroneous 
damping measurements. Therefore, a s e r i e s  of damping measure- 
ments were performed on the  t e s t  panel outs ide of t h e  vacuum 
chamber, as well as in s ide  the vacuum chamber ( a t  atmospheric 
pressure) .  No measurable d i f fe rences  were observed; s ince  
acous t ic  e f fec ts  should be more pronounced at  higher pressures,  
one may conclude tha t  the gas volume i n  t h e  chamber d id  not  
d i s t o r t  the p la te  dampirg measurements s ign i f i can t ly .  

The damping one would expect t o  obtain due t o  acoust ic  
r ad ia t ion  from the plate-and-beam assembly was also ca lcu la ted  
by means of the reasonably well-validated theory of R e f .  6. The 
calculated loss f a c t o r  contr ibut ions due t o  acoust ic  r ad ia t ion  
were found t o  be a t  least  an order  of magnitude smaller than any 
of the  l o s s  f a c t o r s  measured on the bare (beam-less) plate; 
acous t ic  rad ia t ion ,  therefore ,  is expected t o  have no s ign i f i can t  
e f f e c t  on the  experimental r e s u l t s .  
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Loss Factor Contribution Due t o  Gas Pwnpinq 

In o r d e r  t o  determine the  amount of damping t h a t  may be 
ascribed t o  gas pumping i n  the  beam-plate interspace,  two sets 
of experiments were performed. I n  one se t ,  the  damping of the 
plate-and-beam assembly was measured a t  various frequencies and 
gas pressures; i n  t h e  other ,  t h e  damping of the bare (beam-less) 
plate  was measured under the  same conditions. 

The damping of the  bare plate was found t o  be independent 
of gas pressure and of the type of  gas i n  the chamber. Hence, 
t h i s  damping may be ascribed t o  the plate  material, wi th  
possibly a small contr ibut ion from the support system. The 
damping of  the  p l a t e  w i t h  the beam attached always was found t o  
exceed t h a t  observed under the same conditions, but  i n  absence 
of the beam. The damping increase obtained (over t h e  corre- 
sponding bare-plate condition) when the beam i s  attached is 
taken t o  represent t he  damping contr ibut ion due t o  gas pumping, 
s ince  a l l  other  damping mechanisms t h a t  are brought i n t o  play 
when the beam i s  mounted on the plate  a re  believed t o  have 
negl igible  e f f e c t s .  Y 

Comparison of Theoretical  and Experimental Results 

Gas Propert ies  

I n  order t o  determine the damping e f f e c t  tha t  the  previously 
discussed theory p red ic t s  f o r  a given gas and a given beam-plate 
configuration, one must know three proper t ies  of  the gas: (1) the  
molecular mean f r e e  path a t  a known pressure,  (2)  the mean molecular 
veloci ty  a t  a known temperature, and ( 3 )  the  acoust ic  ve loc i ty  a t  
a known temperature. 
temperature, and t h e  molecular and acous t ic  v e l o c i t i e s  do not 

[The mean free path i s  independent of 

depend s ign i f i can t ly  on pressure.  W ]  
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Values of these three  propert ies  cannot readi ly  be found 
from the  l i t e r a t u r e ,  but may be calculated from other,  more 
easi ly  found values by use of re lat ions ava i lab le  from gas 
dynamics theory. Table I l i s t s  data on the  three gases used 
i n  the experimental program, including the  calculated values of 
t he  three aforementioned propert ies ,  and a l s o  ind ica t e s  how these 
were calculated.  The range of kinematic v i s c o s i t i e s  covered i s  
of p a r t i c u l a r  i n t e r e s t  here; the  kinematic v i scos i ty  of helium 
is about 5 times t h a t  of a i r ,  and tha t  of a i r  is near ly  7 t i m e s  
that  of Freon 114. 

Calculations 

Calculations were performed f o r  the t e s t  plate-and-beam 
system, based on the previously presented t h e o r e t i c a l  expres- 
sions,  on the gas property values l i s t ed  i n  Table I, and using 
a gap thickness h=2x10-3in~5x10-3cm. 
value represents  the  average measured value co r rec t  t o  one 
s ign i f i can t  f igure.  The accuracy of the measurements does not 
warrant t he  use of more f igures .  Calculations ind ica t e  that the  
r e s u l t s  are not s i g n i f i c a n t l y  changed by changes i n  t h e  value 
of h.) 

( T h i s  gap thickness 

The Transi t ion Parameter B. 

I n i t i a l l y  some exploratory calculat ions were undertaken t o  
determine what value of the parameter B w i l l  r e s u l t  i n  the best 
agreement between theory and experiment. A t y p i c a l  s e t  of curves, 
showing how the  theo re t i ca l ly  predicted air-pumping l o s s  f a c t o r  
var ies  w i t h  pressure, f o r  severa l  values of B, appears i n  Fig. 5. 
Higher values of B are seen t o  result i n  general ly  g rea t e r  l o s s  
f a c t o r  values, i n  more pronounced peaks, and i n  lesser slopes a t  
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low pressures. 

the loss f a c t o r  is p r a c t i c a l l y  independent of B. 

As one expects f rom the theory,  the  e f f e c t  of 
. B decreases wi th  increasing pressure;  f o r  high enough pressures,  

The tes t  da ta  (e.g., Fig. 6c, which corresponds t o  Fig. 5) 
show no pronounced peaks, and appear on t h e  whole t o  agree bes t  
wi th  the theo re t i ca l  curves f o r  B=l .  There i s  some disagreement 
a t  low pressures,  where the  theo re t i ca l  curve f o r  Bcl has a 
s teeper  slope than t h a t  general ly  indicated by the data, 
t h e  measured loss f ac to r s  f o r  low pressures a re  small, and there- 
fore  of questionable va l id i ty ,  since these l o s s  f a c t o r s  are ob- 
tained from the  d i f fe rence  between two measured values of  near ly  
equal  magnitude. Although D i m e f f ,  Lane, and Coon2/found b e t t e r  
agreement f o r  B30, a value of B=l is more near ly  what one would 
expect on t h e  basis of physical  reasoning (s ince  B=l i m p l i e s  
t n a t  t r a n s i t i o n  from confined t o  open space behavior occurs if 
the mean f r e e  path is of the same magnitude as the  gap width) .  

However, 

Theoret ical ly  Predicted Loss Factor o f  Test Panel; Experimental Data 

The results of ca lcu la t ions ,  using B=l and t h e  appropriate 
t e s t  plate-and-beam assembly and gas parameters, a r e  shown i n  
Figs. 6 - 8, together  wi th  the  corresponding t e s t  data. 
pe r t a ins  to air ,  Fig. 7 t o  helium, and Fig. 8 t o  Freon 114. I n  
order t o  present  t h i s  information i n  e a s i l y  i n t e r p r e t a b l e  form, 
the  da t a  and curves f o r  each gas have been spread over f o u r  
sheets  (i.e., each f igu re  has been divided i n t o  four  pages).  

Figure 6 
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Discussion 

Agreement Between Theory and Experiment 

Inspection of Figs. 6 - 8 revea ls  t ha t  the experimental 
data generally agree reasonably w e l l  w i t h  the t h e o r e t i c a l  pre- 
dict ions,  both i n  terms of t rends  and i n  terms of magnitudes. 
(The data  of F ig .  6 are found a l s o  t o  agree w i t h  similar pre- I 

vious data. L a )  

Because experimental determination of gas-pumping l o s s  
fac tors  involves taking the d i f fe rence  between two l o s s  f a c t o r  
measurements, each of which is subjec t  t o  some e r ro r ,  the loss 
f a c t o r  data must be considered as rather imprecise. This  l ack  
of precision i s  p a r t i c u l a r l y  important f o r  low pressure data, 
where the small gas-pumping damping contr ibut ion is computed 
from t h e  d i f fe rence  between two near ly  equal quan t i t i e s .  The 
d i f f i c u l t y  of measuring such small air-pumping damping cont r i -  
butions has made it impossible t o  measure these contr ibut ions 
i n  some cases; i n  o ther  cases  the lack of prec is ion  a t  low 
pressures m i g h t  account for some of the  discrepancy between 
theory and experiment a t  low pressures .  

It is t o  be noted t h a t  f o r  t h e  t e s t  panel k d+.5 a t  
500 cps, s o  tha t  no s i g n i f i c a n t  e f f e c t s  of the r i v e t s  on t h e  
gas-pumping damping are expected t o  occur a t  frequencies above 

P 

500 cps. 

The discrepancies  between experimental data and t h e o r e t i c a l  
predict ions may be a t t r i b u t e d  not only t o  t he  aforementioned 
experimental inaccuracies,  bu t  a l s o  t o  shortcomings i n  the  theory. 
Several assumptions were made i n  t h e  development of the theory, 
f o r  the  sake of t r a c t a b i l i t y .  Among the most questionable of 
these are those concerned w i t h  t h e  e f f e c t  of the r i v e t s ,  w i t h  
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confining a t t e n t i o n  t o  plate waves impinging normally on the  
beam, and w i t h  f lu id-s t ruc ture  in te rac t ion .  It is ,  indeed, 
g ra t i fy ing  t o  note how well a r e l a t ive ly  simple theory can pre- 
d i c t  t he  s a l i e n t  f ea tu re s  of the observed behavior, i n  s p i t e  of 
the possibly marginal v a l i d i t y  o f  some of these assumptions, 

S imi l a r i t y  of Results f o r  Different  Gases 

It i s  of i n t e r e s t  t o  note t h a t  the t h e o r e t i c a l  ca lcu la t tons  
pred ic t  that  a l l  three gases used should produce very near ly  the  
same gas-pumping loss f ac to r  contribution, i n  sp i te  of t h e i r  
g rea t ly  d i f f e r i n g  kinematic v i scos i t ies .  That t h i s  pred ic t ion  
i s  a c t u a l l y  rea l ized  i s  evident f o r  example from Fig. 9,  which 
compares corresponding loss f a c t o r  curves and data f o r  all three 
gzses a t  1,000 cps a& 8,000 cps. 

Th i s ,  a t  f irst  glance, somewhat surpr i s ing  very weak depen- 
dence on t h e  character  of the gas may be explained i n  part by the  
f a c t  t h a t  a t  l e a s t  f o r  the gases used here, t he  gases wi th  greater 
kinematic v i s c o s i t i e s  a l so  had greater acoust ic  ve loc i t i e s  
(Table I) .  Thus, the  more viscous gases presented greater 
s t i f f n e s s e s  t o  the plate  motions, r e s t r i c t e d  the p la te  motions 
more, and hence were pumped t o  a l e s se r  degree. 
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SUMMARY AND CONCLUSIONS 

Summary 

The foregoing r e s u l t s  re inforce  t h e  previous findin& 132 

t h a t  the d i s s ipa t ion  of vibratory energy a t  r ive ted  ( o r  o ther  
multi-point-fastened) j o i n t s  between panels and r e l a t i v e l y  s t i f f  
re inforc ing  members (beams), a t  frequencies considerably higher 
than t h e  panel fundamental, occurs pr imar i ly  as a r e s u l t  of  the 
gas "pumping" tha t  i s  produced as adjacent surfaces  of the  
panels and reinforcing members move away f r o m  and toward each 
other .  

The induced o s c i l l a t o r y  gas flow i n  the  in te rspace  between 
a panel and re inforc ing  beam i s  primarily tangent ia l  t o  t h e  
surfaces ,  and energy d i s s ipa t ion  resu l t s  from viscous l o s s e s  i n  
t h i s  flow. 

The viscous lo s ses  i n  the  o s c i l l a t o r y  flow are confined 
e s s e n t i a l l y  t o  boundary layer regions near t h e  s o l i d  surfaces .  
The thickness  of such a region i s  proportional t o  t h e  square- 
roo t  of t h e  kinematic v i scos i ty  of the gas i n  the  plate-beam 
interspace,  and inverse ly  proportional t o  the  square-root of 
frequency. If t h e  boundary layer thickness i s  much smaller 
than the  in te rspace  gap thickness,  then only a small f r a c t i o n  
of the gas i n  the interspace pa r t i c ipa t e s  e f f e c t i v e l y  i n  the  
energy d iss ipa t ion ,  and r e l a t i v e l y  l i t t l e  damping r e s u l t s .  On 
the o ther  hand, i f  the boundary layer thickness  i s  much g r e a t e r  
than t h e  gap thickness,  then a l l  o f  t h e  gas p a r t i c i p a t e s  i n  the  
d i s s ipa t ion ,  but viscous forces  grea t ly  r e s t r i c t  its motion, so 
that  the t o t a l  energy d i s s ipa t ion  again i s  small. M a x i m u m  energy 
d i s s i p a t i o n  occurs at  an intermediate condition, where the boundary 
layer  thickness  i s  roughly half of the gap thickness. 
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The amount of gas pumping that is  produced by a given 
panel vibration, and thus the  magnitude of the gas-pumping 
damping, also depends on the r a t i o  of the  " loca l  s t i f f n e s s "  
of the gas i n  the interspace t o  the  " loca l  mass" of the panel. 
T h i s  r a t i o  increases  w i t h  increasing ambient pressure and w i t h  

decreasing gap thickness and frequency. If t h i s  r a t i o  i s  large, 
t h e n  the gas pressure i n  the interspace r e s t r i c t s  the  r e l a t i v e  
motion there,  and there r e s u l t s  comparatively l i t t l e  gas flow, 
and thus r e l a t i v e l y  l i t t l e  corresponding energy d i s s ipa t ion .  

Two proper t ies  of the gas affect  the  gas-pumping loss 
f ac to r  t h a t  is obtained w i t h  a given s t r u c t u r a l  configuration, 
a t  a given frequency, and a t  a given temperature and pressure.  
These propert ies  are the kinematic v i scos i ty  of the gas (which 
depends on both pressure and temperature) and the acous t ic  vel- 
o c i t y  in  the  gas (which e s s e n t i a l l y  depends only on temperature). 
However, at  low pressures,  where the  molecular mean f r e e  path i s  
larger than  t h e  gap thickness, the kinematic v i scos i ty  d i f f e r s  
from t h e  usual " large volumerr value, and then a l s o  depends on the 
r a t i o  o f  gap thickness t o  mean free path. 

Concluding Remarks 

Since i t  has been found t h a t  the gas-pumping mechanism may 
be responsible f o r  a major port ion of t he  t o t a l  damping of a 
s t ruc ture  i n  a i r ,  and s ince gas-pumping damping decreases w i t h  
decreasing ambient pressure,  it is evident that v ibra t ion  t e s t i n g  
of aerospace s t ruc tu res  a t  ground l e v e l  atmospheric pressures  may 
be unconservative. I n  such ground l e v e l  tests the  t o t a l  s t r u c t u r a l  
damping i s  greater than tha t  i n  rarefied atmosphere; thus,  the 
vibration l e v e l s  one measures i n  ground t e s t  may be s ign i f i can t ly  
smaller than those one may encounter a t  reduced pressures  (a t  
a l t i t u d e  o r  outs ide t h e  atmosphere) due t o  the  same exc i ta t ion .  
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Therefore i t  appears imperative t o  t e s t  c r i t i c a l  aerospace 
. s t ruc tu res  o r  components under vacuum conditions, o r  t o  sub- 

j e c t  them at  atmospheric pressures t o  appropriately higher 
exc i t a t ion  l e v e l s  i n  order t o  t a k e  the reduced damping i n  
vacuum i n t o  account. 

Although it i s  hoped that  t h e  study presented i n  t h i s  

repor t  suppl ies  a s tep  toward the understanding of the gas- 
pumping damping mechanism, much work remains t o  be done. 

It i s  important t o  r e i t e r a t e  t h a t  t h e  ana lys i s  presented 
i n  t h i s  repor t  dea ls  only with frequencies that  are much higher 
than the panel fundamental a t  which the  plate  f l exura l  wave- 
lengths  exceed the  dis tances  between adjacent r i v e t s  o r  bo l t s .  
Thus, t he  present analysis  does not deal w i t h  bellows-like 
gas-pumping-damping produced by gross to-and-fro r e l a t i v e  motion 
between two s t r u c t u r a l  components. However, now tha t  the ground- 
work has been l a i d ,  one should be able t o  perform analyses of the 
import an t  lower- frequency problems r e l a t i v e l y  d i r e c t l y .  

The present  ana lys i s  i s  a greatly simplified one, as has 
been mentioned, and therefore  suf fers  severa l  shortcomings. 
Extensions of the theory t o  take bet ter  account of such items 
as the ac t ion  of the  r i v e t s ,  of the f i n i t e  beam mass and 
s t i f f n e s s ,  and of the gas-structure in te rac t ion ,  would be useful.  

Additional measurements, t o  determine whether predicted 
temperature-dependences are realized, a r e  indicated i n  order t o  
explore the v a l i d i t y  o f  the  developed theory more f u l l y .  
of gas-pumping damping of a p rac t i ca l  s t ruc tu re  under r e a l i s t i c  
conditions, and of optimization of t h i s  damping, may be expected 
t o  be both useful and in s t ruc t ive .  

A study 
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R I V E T S  
OR OTHER 
POINT- FASTENERS 

F I G .  1 P L A T E  W I T H  M U L T I - P O I N T - F A S T E N E D  
A T T A C H E D  B E A M  
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F I G . 2  G E O M E T R Y  A N D  C O O R D I N A T E S  OF 
S E C T I O N  T A K E N  T H R O U G H  P L A T E  
P E R P E N D  I C U L A R  T O  B E A M  L E N G T H  
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PRESSURE p (mm H G )  

f l C . 6 a  G A S - P U M P I N G  L O S S  F A C T O R  OF T E S T  
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